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Explicit auto-transformations of integrable chains 

V E Adler and R I Yamilov 
Ufa Institute of Mathematics, Russian Academy of Sciences, Chernyshevsky str. 112, 
Ufa 450000, Russia 

Received 5 May 1993, in final form 25 August I993 

Abstract. A construction scheme for explicit auto-transformations of integrable discrete- 
diflerential equations (chains) is presented. These transformations are rather convenient to 
obtain the exact solutions fofchains as well as associated partial diRaential systems. On 
the other hand they exemplify new integrable discrete mappings. Their group properties 
are also of great interest. The scheme is illustrated by several examples of integrable systems 
which contains the nonlinear SchrLidinger system and the Landau-Lifshits model. 

1. Introduction 

B5cklund auto-transformations for integrable POES are known to be very often evolu- 
tion discrete-differential equations ([ 1,2]; [3] was one of the first where the Toda and 
Volterra models were interpreted as Backlund transformations for integrable systems 
of the Schrodinger type). For example, the nonlinear SchrBdingec system 

U( = U, +2Ju -u, = U,, + 22u  (1) 

qixr=exp(qjr. I - 6) - exp(6- q j -  I 1 (2) 

U .  ,.x =-U; ,+I -2 ] U j + l  (3) 

is related to two chains : 

ujz= vi- I + u;uj-I 

where j E Z .  In [l] there is a rather large list of integrable chains which consists of two 
essentially different classes. Chains from the first class containing the.Toda lattice (2) 
are remarkable owing to the explicit auto-transformations for corresponding 
Schrodinger-type systems which they specify (see also [3]). These transformations are 
handy for the construction of exact solutions [4]. For example, the Toda lattice gives 
rise to the invertible differential substitution 

c= U,, - .-'U: + U% G=u-',  

This formula allows one to construct easily a new solution ti, G of the nonlinear Schrod- 
inger system ( I ) ,  starting from its arbitrary solution U, U. 

We shall be interested in the second class. Its simplest representative is the chain 
(3); the others can be written in the form 
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where a, p, y are arbitrary constants, or in the form 

V E Adler ana' R I Yainilov 

~ , ~ = r , / ( ~ , + ~ + u ~ + ~ ) - 1 / 2 a r ~ / a u ~ + ~ ,  I U,,= -rj-l /(uj-l  + v j - l )  + 1/2 a r i - l / a ~ j - l  

where yr is a polynomial with constant coefficients: 

( 5 )  

2 2  rj= r(uj, uj+ I ) =aujuj+ I +Pujvj+ I (uj- uj+ I ) 

+yujUj+I +S(u,- uj+ I )Z+  &(Uj- U,+,) +p.  (6)  
It seemed for some time that the chains (3), (4) and (5) were not so convenient for the 
construction of exact solutions as chains similar to (2).  We intend to demonstrate that 
this is not so. It turns out that explicit auto-transformations arise in this case as well, 
but at the next discretization level. 

We make our words more exact by example of the chain (3). One can obtain a non- 
trivial generalization of (3) introducing additional parameters pj : 

ujx= -Uj+ 1 - p p j -  I(; v j+  I 

{ vjs = vj- I +pj-  rvi + $U,- I 
(7) 

The chain (7), in contrast to (3), admits an explicit auto-transformation Bk which is 
given by 

B k  : 

8k-I =Pr p k = p t - l  

in thekthnodeandis identical in others (Gj=ui, Gj=vjforj#k, pj=pjforj#k-l ,k).  
Note that (8) is not an auto-transformation in the strict sense of the word, since it 
permutes parameters of the chain. For this reason it is sometimes useful to consider 
instead of a single chain, the whole set obtained from it by permutations ofparameters. 

The transformations (8) allow one to construct exact solutions of the chain (7) and, 
at the same time, of the nonlinear Schrodinger system (1), starting from some appropri- 
ate initial solution. No problems arise when we construct solutions for higher symmet- 
ries of (1) as well as solutions admitting the scalar or complex reduction. The scheme 
of the construction of multi-soliton solutions is given in section 3. 

As in the discussed example, we shall present integrable generalizations for the chains 
(4) and ( 5 )  containing additional parameters pi, and auto-transformations suitable for 
the integration of associated Schrodinger type systems. The associated systems ace of 
the form 

U, = U,, +f (U, U, U, U, = -uxx +&?(U, 0, 0x1 

and represent key equations from the complete list of Schr6dinger-type integrable sys- 
tems obtained in [5] with the help of the symmetry approach. To achieve our objective 
we use the linked zero curvature representations for the chains and systems associated 
with them. It should be pointed out that we shall not consider the important problem 
of construction of such representations; all representations in this paper were found 
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directly from the determining equation (9). The general scheme is stated and substanti- 
ated in section 2. Results regarding the chains (4) and ( 5 )  are enumerated in section 5. 

Note that every chain (3), (4), (5) is connected with two associated systems at least 
[1,7]. This means that the transformations presented permit one to solve many more 
systems than those described in this paper. The chains (4), (5 )  do not exchaust examples 
of chains analogous to (3). Multi-field generalizations of the chain (3) have been 
obtained in [SI. The scheme presented is applicable to other types of integrable systems 
(cf 191 where the Kdv equation is considered). 

The transformations discussed are of interest also due to their group properties 
defined by the following identities 

B; = (Bpj+ I )’= 1 B,Bi=BIBj i # j i  1 .  

Additionally, they provide new examples of integrable discrete mappings which are 
actively being investigated at present ([9-131). The problem connected with the trans- 
formations (8) is to investigate the dynamics of uj, uj under the action of the group 
generated by Bk. In other words, the integration problem for multi-valued mapping 
(or correspondence) is raised. When the additional periodicity condition is imposed, 
this problem becomes closely connected with the theory of the finite-band integration 
of the associated system (1). This connection is illustrated in section 4. 

2. General scheme 

Let us consider a chain admitting zero curvature representation 

(wj),=uj+Iw/- wj uj j d  (9) 

where 4, 6 are 2 x 2 matrices, V,= U(I, u,, uj),  Ct;= W(I ,  uj, U,+ I ,  pJ), I is a spectral 
parameter, and pj are parameters of the chain. In the examples below tr 4=0 and the 
formula (det W),=det Wtr(w;W-’) implies that det Ct;=S(I,pj) does not depend 
on x.  

We define a transformation Bk by the relations 

4 :  @ k @ k - I = w k w k - ]  @.= I J  w. j # k , k - l  (10) 

where P&= #‘(I, Cj. Cj+ I, B,). These relations give a system of algebraic equations for 
& I ,  6 k ,  Ck,  &+I, P k - 1 ,  6,. As a rule this system is overdetermined. However, it is 
consistent, for it always has ai identical solution. It should be remarked that sometimes 
no other solutions exist. For example, our scheme does not give results in the case of 
the Toda and Volterra models, although these equations are well known to admit 
Blcklund auto-transformations [ 17-21]. Nevertheless, the class of the chains admitting 
a non-trivial transformation seems to be large enough. For the chains (4). (5) the 
transformations (IO) are of the specific form 
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where P, Q are rational functions (see section 5). The rule about the change of Pi can 
be derived from the equality det WkW~-l=det Pkmk-,. The fact that P and Q are 
rational follows from the overdeterminedness of the system (lo), which allows us to 
reduce it to a linear one. In formulae like (11) below we shall write down only actually 
transformed variables for short. 

Theorem 1 explains why transfonnations of the form (lo), (1 1) do not change the 
chains under consideration. 

Theorem 1. Let all the derivatives U,, vjx be uniquely determined not only by the system 
(9) but also by 

V E AdIer and R I Yamilov 

(ct;.),= U,+ I Wj- W j q  j # k ,  k -  1 
(12) 

( w k w k - I  ).x= u k +  I ( w k w k -  1)-  ( w k w k -  I ) u k -  I .  

Let a transformation (10) be of the form (11). Then the chain (9) is invariant under 
this transformation up to a change ~k ct P k -  ,. 
ProoJ The system (12) follows from (9). In accordance with theorem I hypotheses, 
(9) and (12) are equivalent. After the transformation (lo), (ll),  the system (12) remains 
a system of the same form, but with 4, Cj ,  Pj in place of U,, vj, pi. Thus the chain (9) 

0 
The hypotheses of theorem 1 express some rigidity of the chain (9). The following 

remains unchanged up to a change Pk c-) pk- I. . 

condition on the matrices W, is stronger. 

Additionally, we assume (and it is natural) that the equalities @= W; for all j imply 
that ,8j=/3i, Cj=u/,  $-=q for all j .  In particular the first of the theorem 1 hypotheses 
follows from condition (A), since the equation (10) possesses only one solution if the 
permutation (r is fixed. 

Theorem 2.. Let the chain (9) satisfy condition (A) and admit non-trivial trans- 
formations (10). Then the identities 

E,? = (EjBj+ I )3 = 1 E;Bj= BjE; i # j i  1 (14) 
are valid, defining the code of the group G generated by Bj. Any transformation satisfy- 
ing (13) (and of course %== W,, j f k ,  . . . , k + p )  belongs,to this group. 

Pro06 Each of the transformations Bf, (EjBl+l)3, (EjE;)2, i # j i  I ,  satisifies a relation 
of the form (13) and acts on Piidentically. By virtue of condition (A) they act identically 
on the variables ui, v, as well. 

Any transformation (13) specifies some permutation on the set of pi .  There exists 
a composition of this transformation with some element of the group G which gives 
identical permutation. This composition satisfies one of the relations (13) and therefore 
is identical transformation. 0 
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If a chain admits non-trivial transformations (lo), then according to theorem 2 any 
attempt to generalize them with the help of (13) fails: every transformation obtained 
will be their composition. Nevertheless the situation is possible when the trans- 
formations (10) are trivial, and then one may try to obtain a non-trivial transformation 
by (13) withp> 1. We present such an example in section 4. 

The partial differential system associated with the chain (9) is given by zero curvature 
representation 

U,=V,+[V, U ]  (15) 
where the matrix U= U(L, U, U) coincides with the matrix U from the representation 
(9). In order to construct the system (15) solutions by the transformations (IO), it is 
convenient to pass to the representation 

( % ) , = V j + , q - l q c  (16) 
where K= V(L, p j ,  uj, U,, U,,, U,, :. . ). Since this chain is of the same type as (9), it is 
invariant under the transformations Bj too (see theorem 1). The representation (15) is 
the compatibility condition for the chains (9) and (16). So~one can construct solutions 
of (15) with the help of Bj, generating common solutions of the chains (9) and (16). 
This takes place for higher symmetries of (15) as well. 

Generally speaking, the transformation (IO) may not be related with any chain (9), 
and also the chain (9) may not be related with any system (15). In this paper we 
consider the case when there are both discretization levels. In this case the chain (9) 
defines an infinite'sequence of Backlund transformations for the system (15). The for- 
mula (IO) expresses the commutability of two Backlund transformations, as one can 
see from the diagram 

Q 

Here the lower branch corresponds to the original chain, and the upper one corresponds 
to the transformed chain. 

The so-called nonlinear superposition principle for Backlund transformations is well 
known [6]. If there is a matrix potential U+ I and two potentials &,and & related to 
Uk-, by Backlund transformation, then this principle allows one to obtain (in an 
algebraic way) a new potential U*+, which is a result of double Backlund transfonna- 
tion. The relationships (10) often can be rewritten as nonlinear superposition formulae. 
However, there exist examples when this is impossible. We also remark that Backlund 
transformations for the PainlCve equations can be derived from the transformations 
(IO) of suitable chains [9]. 

3. Nonlinear Schrijdinger system 

The system (1) and chain (7) can be written in the form (15), (9) with 

It is an easy exercise to prove that (10) yields the transformations (8). 
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Tfzeorem 3. The transformations (8) act on the set of chains (7) and satisfy the identities 

V E Adler and R I Yamilou 

(14). 

ProoJ It is sufficient to check that the condition (A) holds. This is evident for the first 
partof(A), sincedet Wj=2jl-/3j.If2A=pkweobtainthatker Wk+, . . . Wkisspanned 
on the vector ( u k + l ,  l)', whereby & + ~ = u k + ~  (see (13)). Further, one can easiIy verify 
that 

where deg a <p,  and the sign * designates the inessentials. So 

and therefore &=uk. We obtain pk= Wk, and the proof is r e l ~ c e d  to the case of the 
U 

Let us demonstrate how the transformations ( 8 )  help to construct system (I)  solu- 
tions. According to the previous section these transformations allow one to generate 
common solutions of the equations (9) and (16). The matrix equation (16) represents 
the chain 

lesser number of matrices in (13). 

uj,=-uj+Is-(UjVj+I+pj)uj~+uj+lu,uj+I +U:./ 

-fJj,=uj-l,+(ujuj-l +p j - I )v jx  + uj-lujuj-l +$Uj .  

One can easily check that, by virtue of (7), this chain is equivalent to the sequence of 
the nonlinear SchrXinger systems 

(17) 2 
-U,= uj=+ 2ujuj. 

u j ,=uj~+2u,u j  2 

Thus the transformations ( 8 )  are fit for the construction of common solutions of the 
chains (7) and (17). This means one can construct solutions of (7) with uj, uj satisfying, 
for all j ,  the Schrodinger system (I), starting from some trivial solution of this kind. 
This statement remains valid for higher symmetries of (I) as well, but we shall not 
prove it. 

First of all we have to construct some initial solution of (7). There exist several 
possibilities to do this, and the simplest way is to impose the conditions 

uo=ul=u2=. . .=a uo=U-I=u-2=. ..=o 
which split (7) in two linear chains 

-u-jx=p-ju-,+u-jtt 0 .  I-' =pj- IUj+uj- ,  j>O. 

The system (I)  gives the set of heat equations 

U-jr = u-jx.x -vj,= ujxr j>O 

which permit one to find easily the dependence on t .  In a similar way, the next symmetry 
of (1) 

U,, = U,,, + 6uw, U,,= U,+ ~ U U U ,  
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is turned into linear equations again, and in general 

ru,./ax" vi,= ( - i y +  'a"vj/ax" P O ,  
where tz= t. Assuming that all Pi are different, we find 

~-~=exp(y-l)  u-2= exp(y-IMP-1 - P - 3  +exp(y-2) .. 
vI  =exp(-uo) 02 = exp(-yo)/(Po - PI) + exp(-yd ... 

where yj= cj- pjx+ fl:t - P?t3 + . . . . 
Applying transformations (8) to the solutions obtained one can construct new solu- 

tions of (17). Consider, for example, transformation T=. . . B,. . . B I B o ,  which is, obvi- 
ously, a correctly defined transformation of the chain. The jth component of the new 
solution can be expressed through the~components of the old solution in explicit form 
as a finite continued fraction: 

P o - P - I  1 
v j c ,  - U j - I  + v j  -...+ V I  -11-1 

- -  P.-P- ,  1 P j - I - P - I  T(u,)=u, + I - 

j > O  T(Pj)=Pj+l j2-1.  Pi-P-1 
l / ' ~ j +  I - T ( U j -  I ) 

T ( V j )  =U,+ 
- 

Note that the chain (7) admits two reductions: 

v j =  ( -l)'Lj Pr= -P- j - I  

and, after the change x=ic  
- 

v, = Lj P j = P - j - I .  (1% 

It is easy to see that BO, B-IBI , B-2Bz,. . . preserve these reductions. Moreover, the 
component (uo , VO) satisfies the condition ~0 = vo in the first case and the condition vo = 
go in the second one. Choosing the constants cj in the proper way, one can easily obtain 
an initial solution satisfying the conditions (18) or (19). Starting from this one can 
wnstruct solutions of the MKdv equation 

U,, = U,,, + 62u, 

or nonlinear Schrodinger equation 

iu,=uee -21~1 2 U (t=iz) 

respectively. Consider, for example, the case of MKdv. Note that the reduction (18), 
unlike (19), is compatible only with odd flows, which implies~i=c,-P~-p;t,-. . .. 
Transformation T= . . . BkB+. . . B ~ B - I B ~  acts as follows (we are interested only in 
variables with non-negative indices): 

2/30 = Pj+ I j20 T(u0) = U0 +- 
0,  + 1/01 

2PO 1 
U,+, - uj-I + v j  -...+ VI  + V I  

_ _  P j + P O  1 P j - I + P o  T(uJ=u/ + - - 
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The MKdv solution u=T"(u~)  obtained by iteration of this transform depends on 2n 
constants Po, co, . . . , P . - l ,  e,-, . Let us rewrite it in the form 

V E Adler and R I Yamilov 

2s.-1 
Y - ~ ( u , ) + I / T " - l ( u 1 )  

2P1 +...+ 2Po + U =  
U1 + 1/01 T(v1) + l/T(Ul) 

then assuming that all Pj  and exp(c,) are real, we see that U is regular for all real values 
of n and t and therefore it performs the general n-soliton solution of MKdv. 

4. Examples of integrable discrete mappings 

A quite natural generalization of the Liouville integrability notion for the discrete 
mappings is given in [12]. Following this paper we call a correspondence (i.e. in general 
multi-valued mapping) @ : M +  M symplectic if it preserves symplectic structure on M. 
A function on M being preserved under the action of Q is called the first integral or 
invariant. A symplectic correspondence CI is called integrable if it admits n= 4 dim M 
functionally independent involutory first integrals. The discrete version of the Liouville 
theorem states that if the common level surface of the invariants of an integrable 
correspondence @ is compact, then it is diffeomorphic to a disconnected union of n- 
dimensional ton, and CI defines a multi-valued shift on it. 

The transformations (10) give a new wide class of integrable correspondences. We 
shall show this by example of the transformations (8) first. Consider the system obtained 
from (7) by imposing the periodicity condition 

It is assumed in this section that indices in all formulae belong to hN. The dynamical 
system obtained defines the finite-band solutions of (1) depending on t as on an integra- 
tion constant [ l ,  141. Let us consider the integration problem for the N-valued corre- 
spondence B defined by the transformations B l ,  . . . , BN.  The matrix I@= 
Wj+N- I . . . Wj satisfies the equation 

which implies that tr I@ is a generating function for the first integrals of (7)  and (20). 
The algebraic curve 

U,+ ~ ' u j  V j l N ' U j  P j + N = p j  j c z .  (20) 

(k5 )x= tv , ,  %I 

r: det {Er- =O 

is obviously preserved too. On the other hand, it is also clear that r is preserved under 
the action of the correspondence B. 

After imposing the periodicity condition (20) the chain (7) becomes an integrable 
in the Liouville-sense Hamiltonian system with Poisson bracket 

{u,,ujl=Gw+l { u ~ , v j ) = { % U , ) = o  
and the Hamiltonian 

N 
H = C  h, 

I 

where 

hj=u,~j+Pj~jVj+ I + U ? U ? + I / ~ .  
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One can check that tr % provides exactly N functionally independent first integrals in 
involution. 

It is easy to verify that the transformations (8) are Poisson mappings, i.e. they 
preserve the bracket: {&, E,} = {ut ,  z+}, etc. Since the dynamics of pi is trivial, it is 
convenient to pass from the transformations Bj to their combinations leaving p j  
unchanged. Note that it follows from (14) that the group G generated by Bj is isomorphic 
to the affine Weyl group &-I. The subgroup acting on pj identically is generated by 

N - l  r,=(B,. . . BjCN--I) . 
Each of the transformations is a Poisson mapping not changing the system (7), (20) 
and therefore is integrable in the above sense. Thus the original correspondence B is a 
combination of an N-valued integrable correspondence and the group of permutations 
of N elements. 

It is well known that the explicit linearization of the system (1) and its higher 
symmetries, that is the transition to the action-angle variables, is realized on the curve 
r Jacoby manifold. The commutability of the transformations ( 8 )  and the dynamics 
with respect to n and all times immediately implies that transformation corresponds 
to the shift by some constant vector on the Jacoby manifold. So the dynamics is quite 
trivial, and it is remarkable only that this shift can be described in terms of the given 
system by the explicit formulae (8). 

It is clear from what has heen said above how to use the transformations (8)  for 
numerical investigation of the system (7), (20). Indeed, it seems that the iterations of 
one of the transformations 7 must give the phase portrait of the system. However, 
numerical simulations show that the transformations (8) are bad illustrations of the 
discrete Liouville theorem. The level surfaces are not compact, there are no Liouville 
tori, and we fail to obtain the whole phase portrait. The reason is quite obvious. The 
system admits a reduction by means of the introduction of new variables 

Pj= upj+ I qj= uj+ , / U j .  (22) 

-ujx/uj= @+Pj+ Pj 

If the functions p j ,  @ are known, the solution uj, uj is found by the integration: 

ujx/uj=Pj-I +qj-2Pi-Z/P,-I + P j - l .  

For N = 2  it is easy to prove thatp,, qj are elliptic functions, and therefore q, ujgeneraUy 
grow or vanish exponentially, in accordance with numerical experiments. 

So we see it is convenient to pass to the variables (22). Our second example of 
integrable mapping deals with just this case. It turns out that the chain (7) as well as 
the system (1) and the transformations ( 8 )  can be rewritten in terms of (22). In fact 
the change (22) is equivalent to the Bacicklund transformation 

uu=px+pq -u,/u=p + q+ p 
from (1) into 

qr = q x x  - (SZ + 2pq + 2Pq)x p1= -pxx - (P2+  2pq + 2PP)X. (23) 

In terms o f p j ,  qj the chain (7) looks as follows: 

(24) 
Pjx=pj-IQj-l-Pj4i 
qjx=@(@+Pj+Pj-qj+ I -p j+ ,  - B / + l ) .  
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The transformation Bk takes the form 

V E Adkr and R I Yamilao 

where a =Pk- /3k - l .  Although this system and chain do not belong to the main class 

, . .  . 

Figure 1. Lioulille torus. 

which is discussed in this paper, we wish to consider this didactic example in detail. 
The chain (24) is Hamiltonian with Poisson bracket: 

bj 9 q j j  = -41 

hj=P;/2 +PIPJ+PLQ. 

IF,+!, a1 =a 
(the others vanish) and Hamiltonian density: 

Note that the new Poisson structure is degenerate with Casimir function J = q l .  . . qN. 
The transformations B, are Poisson ones and preserve J.  As before the periodicity 
condition reduces the chain (24) to a Liouville integrable system and transformations 
q = ( B j . .  . B,+N-I)N-I where Bk is given by (25) become integrable mappings. The 
pictures below correspond to N =  3 and represent the projections on the plane ( p l ,  q l )  
of the images of a random initial vector under action of transform TI iterations. The 
level surface can be non-compact again, but now without asymptotic tendency io infin- 
ity. In the compact case the level surface is diffeomorphic to an N-1-dimensional torus 
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Figure 2. Non-campuct lewl surfaae. 

dotted in a quite regular way. As a whole the picture looks like a uniform winding on 
torus and provides the visual demonstration of discrete Liouville theorem. 

The system (23) was considered in [ 3 , 5 ] .  The chain (24) (without pi) is closely 
connected with the relativistic Toda lattice [22].  It should be remarked that in this case, 
in contrast to the nonlinear Schrodinger system, the associated system contains the 
parameter pi. The chain (24) defines not an auto-transformation, but the transforma- 
tion of the system (23) with /.?=pi into (23) with p=pi+g. Zero curvature represen- 
tations are given by 

‘A- s  p 

U=(-, -a+> 

where s= ( p + q + p ) / 2 .  It is easy to prove that the equation (10) with the given matrix 
W, possesses only the identical soiution, and therefore no non-trivial transFormations 
arise. It turns out we have to refactorize~the product of three matrices in order to obtain 
&he formulae (25): the transformation Bw is defined by 

B k  : @k@k-,@k-Z= wkwk-]Vk-Z &=y j # k , k - l , k - 2 .  

So we see that sometimes the general scheme from section 2 needs modifications. 
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5. Landau-Lifshits model and other examples 

The results obtained for the nonlinear Schrcdinger system can be generalized for inte- 
grable systems considered in this section. All the chains below possess a Hamiltonian 
structure 

V E Adler and R I Yamilov 

where 

(cf [ 11). Note that the factor Aj=A(uj, uj+ I) can be eliminated by a point transformation, 
but this makes the form of the chains more complicated. For the chain (7) Aj= -1 and 
hj is of the form (21). The structure functions Aj and the Hamiltonian densities hi for 
the other chains are given below. 

For each chain under consideration we present the associated partial differential 
system and the transformation (10). Matrices specifying the representations (9) and 
(15) are given as well. 

Exanple I. The system 

U, =U, + (2uv +P)ux -v, = U,, - (2vu + P ) V X  (27) 

at p=O was discussed in [15]. The zero curvature representation (15) is given by the 
matrices . .  

where r=(uu-L2)/2,  and 

The chain (9) takes the form 

ujx=(ujVj+l +Pj)(uj+l -uj) i vjx=(v,uj-I +pj-1 ) (V j - -V j - I  ) 

and can be written in the Hamiltonian form (26) with 

Aj=ujvj+t+Pj hj=(uj+t - ~ j ) u j + i .  
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The transformation (10) is given by 

.@k 'pk- l .  

As in the case of (23) there is a changing parameter in the system (27). 

Example 2. The system 

U,= U, + 2(u + v)u, -U,= v,-2(v+u)v, 

is equivalent to the Kaup system [16]. The matrices U, V and 4 are 

and the chain (9) is of the form 

U,= (Uj+ U. ,+l)(uj+l -ui+Pj) i up= (U/+ ~ j -  I )(vj- U/- I - Pj-  1 ). 

Its Hamiltonian structure (26) is defined by the functions 

AJ= uj+ U,+ I hj= (uj+ 1 - u/)vj+ I + Pj(uJ+ vJ+ I ) 

and its transformation (10) is given by the formula 

@ k = p k - I  * 

The rest of the examples deals with systems (15) of the form 

2 1 
u,= uxx-- (U:+ P(u)) + - P ( U )  I u+u 2 

2 I -u, = v.Tx -- (US+ P(-v) )  - - P'( -u) 1 U + V  2 
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where the degree of the polynomial P is less than or equal to 4. It is well known [I]  
that the stereographic projection 
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l + u v  . I-uv U - v  S,=- sz=-1- s3=- 
u+v u+v u+v 

and substitution t=iz bring the Landau-Lifshits model 
s, = sx .sv+ s x JS SEW3 <S,s>=I J=diag(Jl, J2, J3 )  
to (28) with P(u)=&u4+6uZ+s, 26=Jl+Jz-Zr3, 4E=Jz-h. One obtains the iso- 
tropic Heisenberg model case at P = O  and anisotropic one at E = O  or 6=f2s. 

The linear fractional transformations 
-av + b ij=- 

cu+d cv-d 
- mt+b 

do not change the form of system (28). The polynomial P i s  changed as in the equation 
G = P ( u ) .  This observation allows us to reduce the system invsetigation to the following 
three cases: P(u)=&, P(u)=6u2, and P(u)=d+au+b  (Pmay have multiple zeros in 
the last case). 

A chain (9) corresponding to the system (28) has the form (5). It can be written in 
the Hamiltonian form (26) with 

I Aj = r1 hj=ln(uj+vj)-T lnri. 
We shall specify rl in each of the cases. 

Example 3. Let us consider the case P(u) = E  first The representations (9) and ( I  5) are 
given by 

I 
where 

*j=-pl(uj+ V j + I  12- E / P j  

and the transformation (10) is 

B k = p k - l .  

When E = O  all the formulae remain valid and correspond to the isotropic Heisenberg 
model. 
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Example 4. The anisotropic ferromagnet corresponds to the case P(u)= SI?. There are 
zero cwa tu re  representations (9) and ( I  5) with 

a ~ j + l - ~ , ~ j + l + ~ j ~ j  -ujuj+ I 

-a2-6 ~ ~ u ~ - ~ ~ ~ ~ + y ~ v ~ + ~  
w.=r-'/2 J I  

where 

rj= ~i.:-2Pp~0~+1+ y j ~ j + l  2 y;-B:=S 

and the following~transfonnation of the chain: 

( P k -  1 - P k b k -  l u k +  1 + u k ( r k u k -  1 + y k -  l u k +  I )  

( P k - 1  - P k ) u k +  yk- Iuk-I + ykvk+I  

B k :  1 ( P k - P k - l ) U k - I % + l  + u k ( y k u k -  I + yk- IVY+ I )  

fik = 

6 k  = 
( P k - P k - l ) v k +  ~ k - l u k - l +  y k u k + l  

p k - I  = P k  B k = P k - l  ? k - l =  y k  % = y k - I .  

If 6 = 0  and yj= -Pi we obtain the isotropic Heisenberg model case again. 

Example 5. In  the case of the general position a linear fractional transformation tums 
the polynomial P into P(u) =tr' +uu+ b. For this E', matrices defining the representation 
(15) of the system (28) are 

v=-( 1 h e \  

(u+U)' f -h 

uv -a (U - u)/2-  d2 - a 

-P 
where 

e= (Uz - a0 + a2 +#)Ux- (I? + au + a2+ a)v, + p ( u  i o ) ( ~  - U+ a) 
f =  (U + a)u,+ A)U= + p  + U) 
h =p(vx  - U,) + (U + u)(uu + I (U - U) +2X2 +u)/2.  

The matrix %has the form 
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D =  -(p + ( a -  y j ) ( a +  y j+  uj) 

rj = 2pj(4 + U,- v j+  i y j )  
2 sj=(ujoj+I + y j ( u j - v j + ~ )  + a + 2 r , ) / 2 D j .  

The parameters p and a ,  pj and yj are constrained by 

$ + P ( a )  =o p:+ P(Yj )  = 0. 
The transformation (IO) is of the form 
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